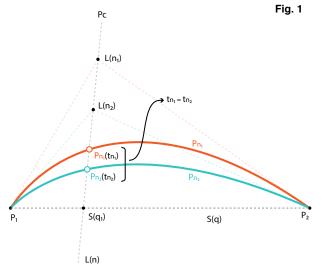
and the "equivalent quadratic bezier (theorem)" Gabriel Suchowolski, December, 2012

Abstract

As extension of the paper "Quadratic bezier offsetting with selective subdivision – Gabriel Suchowolski, Jul 10, 2012" this document will cover some geometrical properties of the quadratic beziers that I found during my investigation for the paper.

Equivalent quadratic beziers theorem

All quadratic bezier, that share the start and end control points P_1 , P_2 , and the "tension point" falling in the rect *L*, intersect *L* at the same parametric value of *t*. (**Fig.1**)



With the rect L defined as

$$L(n) = S(q) + n(P_c - S(q))$$

Where

$$S(q) = P_1 + q(P_2 - P_1)$$
 where $q \in [0,1]$

and for all n the collection of all quadratic beziers

$$P_n(t) = (1-t)^2 P_1 + 2t(1-t) L(n) + t^2 P_2$$
 where $t \in [0,1]$ and $n \in \mathbb{R}$

In other words, (for the same value of q) P_{n_l} intersect L at $P_{n_l}(t_{n_l})$, and P_{n_2} intersect L at $P_{n_2}(t_{n_2})$ where $t_{n_2} = t_{n_l}$

and the "equivalent quadratic bezier (theorem)"

Gabriel Suchowolski, December, 2012

DEMONSTRATION

Let's see what happen with the intersection of L with a quadratic bezier P_n with an arbitrary point L(n) as "tension point" and the start and end controls points at P_1 , P_2 , respectively.

Where a point at rect *S*, $S_q = S(q)$ with $q \in [0,1]$ defines *L* as

$$L(n) = S_q + n(P_c - S_q)$$

Changing the coordinate system as $S_q \rightarrow (0,0)$, be the translation of $P_n(t)$

$$P_n(t) \rightarrow Q_n(t) = (1-t)^2 Q_1 + 2t(1-t) M(n) + t^2 Q_2$$

where (because the change in the coordinate system):

$$P_{1} \rightarrow Q_{1}$$

$$S_{q} \rightarrow Q_{q} = (0,0)$$

$$P_{2} \rightarrow Q_{2}$$

$$P_{c} \rightarrow Q_{c}$$

$$L(n) \rightarrow M(n) = nQ_{c}$$
The intersection is at another point of M

Then the intersection between $Q_n(t)$ and M(n):

$$(1-t)^2 Q_1 + 2t(1-t) M(n) + t^2 Q_2 = M(m)$$

 $(1-t)^2 Q_1 + 2t(1-t) n Q_c + t^2 Q_2 = m Q_c$

Then using the components the system:

$$(1-t)^{2} \frac{Q_{lx}}{Q_{cx}} + 2t(1-t) \frac{nQ_{cx}}{Q_{cx}} + t^{2} \frac{Q_{2x}}{Q_{cx}} = m = (1-t)^{2} \frac{Q_{ly}}{Q_{cy}} + 2t(1-t) \frac{nQ_{cy}}{Q_{cy}} + t^{2} \frac{Q_{2y}}{Q_{cy}}$$

then

Then

$$(1-t)^{2} \left[\frac{Q_{1x}}{Q_{cx}} - \frac{Q_{1y}}{Q_{cy}} \right] + \frac{2t(1-t)(\pi - n)}{0} + t^{2} \left[\frac{Q_{2x}}{Q_{cx}} - \frac{Q_{2y}}{Q_{cy}} \right] = 0$$

Note that the roots for t does not depends of m nor n.

So for any value of n all the quadratic beziers $Q_n(t)$ intersect M(n) at the same tThen for any value of n all quadratic beziers $P_n(t)$ intersect L(n) at the same t

Then, in other words, all quadratic bezier, that share the start and end control points P_1 , P_2 , and with the "tension point" falling in the rect *L* intersect *L* at the same parametric value of *t*

Lets name this quadratic beziers as "equivalent quadratic beziers"

and the "equivalent quadratic bezier (theorem)" Gabriel Suchowolski, December, 2012

Quadratic bezier through three points with P_c and P_t through the bisector

Let be the quadratic bezier

$$P_{c}(t) = (1-t)^{2}P_{1} + 2t(1-t)P_{c} + t^{2}P_{2}$$

where $t \in [0,1]$

there is a P_c "tension point" that P(t) pass through three points (P_1, P_t, P_2) , where the point $P_t \in P(t)$ is one that the rect through P_{c_1} P_t is one of the bisectors of P_1 , P_t , P_2 through P_t (**Fig.2**) formed by the rect A(r) = $P_t + r m$ where $m = m_1 + m_2$ and:

$$m_1 = \frac{P_1 - P_t}{|P_1 - P_t|}$$
 $m_2 = \frac{P_2 - P_t}{|P_2 - P_t|}$

DEMONSTRATION

Be the quadratic bezier that have the start and end control points P_1 , P_2 , and the "tension point" at P_t

$$P_t(t) = (1-t)^2 P_1 + 2t(1-t)P_t + t^2 P_2 \text{ where } t \in [0,1]$$

Let's change the coordinate system (1) as $P_t \rightarrow (0,0)$ then

$$P_{l} \rightarrow Q_{l} = P_{l} - P_{t}$$

$$P_{t} \rightarrow Q_{t} = (0,0)$$

$$P_{2} \rightarrow Q_{2} = P_{2} - P_{t}$$

$$P_{c} \rightarrow Q_{c} = P_{c} - P_{t}$$

So

Fig. 2
Through the bisector
atic bezier

$$j^2P_1 + 2t(1-t)P_c + t^2P_2$$

there $t \in [0,1]$
msion point" that $P(t)$ pass
ints (P_1, P_1, P_2) , where the
is one that the rect through P_c ,
the bisectors of P_1 , P_1 , P_2
b) formed by the rect $A(r) =$
ind:
 $-m_2 = \frac{P_2 - P_1}{|P_2 - P_1|}$
HON
bezier that have the start
1 points P_1 , P_2 , and the
 P_1
 $t)^2P_1 + 2t(1-t)P_1 +$
where $t \in [0,1]$
coordinate system (1) as
 n
 $P_1 \rightarrow Q_1 = P_1 - P_1$
 $P_2 \rightarrow Q_2 = P_2 - P_1$
 $m \rightarrow w = w_1 + w_2$ where $w_1 = \frac{Q_1}{|Q_1|}$; $w_2 = \frac{Q_2}{|Q_2|}$

$$P_t(t) \rightarrow Q_t(t) = (1-t)^2 Q_1 + t^2 Q_2$$

And the bisector rect through Q_t is B(q) = q w where $q \in \mathbb{R}$

 $|Q_2|$

and the "equivalent quadratic bezier (theorem)"

Gabriel Suchowolski, December, 2012

So the intersection between Q(t) and B(q) is

So

$$\left[(1-t)^2 Q_1 + t^2 Q_2 = q \left[\frac{Q_1}{|Q_1|} + \frac{Q_2}{|Q_2|} \right] = \left[\frac{q}{|Q_1|} Q_1 + \frac{q}{|Q_2|} Q_2 \right]$$

 $(1-t)^2 Q_1 + t^2 Q_2 = q w$

Then

$$\frac{q}{|Q_1|} = (1-t)^2 \quad and \quad \frac{q}{|Q_2|} = t^2 \implies \frac{|Q_1|}{|Q_2|} = \frac{t^2}{(1-t)^2} \implies d = \frac{t}{1-t}$$

So as d > 0 the solution for *t* is

$$T = \frac{d}{d+1}$$

Then by the "Equivalent quadratic beziers theorem" this value of ${\it T}$ is the same on every intersection of that quadratic bezier that share the start and en points at Q_1 , Q_2 and the "tension point" through the bisector, with the bisector. So is true particularly for the quadratic bezier

$$Q_c(t) = (1-t)^2 Q_1 + 2t(1-t)Q_c + t^2 Q_2$$

where

$$Q_c(T) = Q_t = (0,0) = (1-T)^2 Q_1 + 2T(1-T)Q_c + T^2 Q_2$$

So

$$Q_{c} = \frac{(1-T)^{2}Q_{1} + T^{2}Q_{2}}{-2T(1-T)} = -\frac{1}{2} \left[\frac{1-T}{T}Q_{1} + \frac{T}{1-T}Q_{2} \right] = -\frac{1}{2} \left[\frac{1}{d}Q_{1} + dQ_{2} \right] = -\frac{1}{2} \left[\frac{\sqrt{|Q_{2}|}}{\sqrt{|Q_{1}|}}Q_{1} + \frac{\sqrt{|Q_{1}|}}{\sqrt{|Q_{2}|}}Q_{2} \right]$$

Then

$$Q_{c} = -\frac{1}{2} \sqrt{|Q_{1}||Q_{2}|} \left[\frac{Q_{1}}{|Q_{1}|} + \frac{Q_{2}}{|Q_{2}|} \right]$$

and the "equivalent quadratic bezier (theorem)" Gabriel Suchowolski, December, 2012

So it's demonstrated Q_c and Q_t pass through the rect bisector B(q) so in consequence for the coordinate translated quadratic bezier where P_c and P_t pass through one of the bisector of P_1 , P_t , P_2 through P_t formed by the rect A(r).

So

$$P_{c} = P_{t} - \frac{1}{2} \sqrt{|P_{1} - P_{t}| |P_{2} - P_{t}|} \left[\frac{P_{1} - P_{t}}{|P_{1} - P_{t}|} + \frac{P_{2} - P_{t}}{|P_{2} - P_{t}|} \right]$$

P_t is the near point of to P_c

There is other bisector perpendicular to *m* at P_t that is $n = m_1 - m_2$

this vector is parallel to the tangent at P_t of $P_c(t)$, as P_t and P_c pass through the bisector parallel to m then P_c is the near point to P_t as the tangent at this point is perpendicular to P_c

DEMONSTRATION

Playing on the coordinate system exposed at the before demonstration, and defining:

$$n \rightarrow u = w_1 - w_2$$

The tangent of Q_t is

$$Q_t' = Q_c'(T) = 2[(1-T)(Q_c - Q_1) + T(Q_2 - Q_c)]$$

with

$$T = \frac{d}{d+1}$$
 and $Q_c = -\frac{1}{2} \left[\frac{1}{d} Q_1 + dQ_2 \right]$

then (after some boring operations)

$$Q_t' = dQ_2 - \frac{l}{d} Q_1$$

as the dot product:

$$Q_c \cdot Q_t' = 0$$

so when Q_t and Q_c pass through the rect bisector B(q), then Q_c is perpendicular to the tangent at Q_t , so Q_t is the near point of $Q_c(t)$ to "tension point" Q_c .

and the "equivalent quadratic bezier (theorem)" Gabriel Suchowolski, December, 2012

In consequence translating back the coordinates: when P_t and P_c pass through the rect bisector A(r), then P_c is perpendicular to the tangent at P_t , so P_t is the near point of $P_c(t)$ to the "tension point" P_c

Note: As the demonstration can be done in reverse is also true that the near point to Pc is the one that pass through the bisector.

References

- 1. Algorithme de De Casteljau, P. de Casteljau. Outillages methodes calcul. Technical report, A Citroen, Paris 1959
- 2. Piecewise Linear Approximation of Bezier Curves Kaspar Fischer October 16, 2000