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Abstract

As extension of the paper “Quadratic bezier pe Fig. 1
offsetting with selective subdivision — Gabriel
Suchowolski, Jul 10, 2012” this document will
cover some geometrical properties of the
quadratic beziers that | found during my
investigation for the paper.

e L(ny)

Equivalent quadratic beziers theorem

All quadratic bezier, that share the start and
end control points P, P, and the “tension

point” falling in the rect L, intersect L at the
same parametric value of 7. (Fig.1)

L(n)

With the rect L defined as
L(n)=S(q) +n(F-— S(q))

Where
S(q) = P, +q(P,—F) where g € [0,1]
and for all 71 the collection of all quadratic beziers

Bu(t)=(1—-1t)?P + 2t(1—t) L(n) + t?°P, where te[0,1]andne R

In other words, (for the same value of g) Py, intersect L at B (fp,), and Py, intersect L at

Pl’lz(tl’lz) where tl’lg = tn]
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DEMONSTRATION

Let's see what happen with the intersection of L with a quadratic bezier B; with an

arbitrary point L(n) as “tension point” and the start and end controls points at P, P,
respectively.
Where a point at rect S, Sg = S(q) with g € [0,1] defines L as

L(n) =S8q +n(F.— Sq)
Changing the coordinate system as Sg — (0,0), be the translation of B, ()

Fa(t) = On(t) = (1-1)> O, + 2t(1—1t) M(n) + 1* O
where (because the change in the coordinate system):

P — 0
Sq — Qg =1(0,0)
B =0 . o
The intersection is at

Fe = Q¢ another point of M
L(n) — M(n) = nQ.

Then the intersection between Qy(7) and M(n): l
(1-1)2Q,+2t(1—-1t) M(n)+ t> Q, = M(m)

Then (1—-1)20,+2t(1-1t)n Q.+ 1?20, =mQ,

Then using the components the system:

Oix nYcx Oox Qly ntYcy 5 Q2y
1-1)? +2t(1-t) + 12 =m=(1-t)? +2t(1-t) + 11—
g Qg 0 T g, Qgcy 0

then
(1-1)> Qe _ O L 2t(1=t)=n) + 12 O Oy =0
Ocx 0O 3 Ocx Oy

cy

Note that the roots for t does not depends of m nor n.

So for any value of 7 all the quadratic beziers Oy (1) intersect M(n) at the same ¢

Then for any value of 7 all quadratic beziers Py, (1) intersect I(1) at the same ¢

Then, in other words, all quadratic bezier, that share the start and end control points P, P>, and

with the “tension point” falling in the rect L intersect L at the same parametric value of ¢

Lets name this quadratic beziers as “equivalent quadratic beziers”
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Quadratic bezier through three points
with P, and P; through the bisector

. . Fig.. 2
Let be the quadratic bezier

B(t) = (1-1)’B+2t(1-t)R + 1°P;
where te[0,1] pc?

there is a . “tension point” that P(f) pass

through three points (P, P, P), where the

point P € P(1) is one that the rect through F., "
P, is one of the bisectors of P, P, P Z
through P; (Fig.2) formed by the rect A(r) =
P; + r m where

Alr)

Bisector

m = m;+m, and:

P, P2
P -k b -k
m=———  my= —
[P —Fl IB—Fl
ac? Fig.. 3
DEMONSTRATION
Be the quadratic bezier that have the start
and end control points P, P, and the w
I . Atl] T (\E --vi/l- --------
tension point” at P; PRl T

)

Pi(t) = (1-1t)*P+2t(1-1)F +
1’P, where te[0,1]

Let’s change the coordinate system (1) as 'Q1 "‘52-
P — (0,0) then B(a)

P -0 =P-Fk

K — 0r=(00)

b —-0=h-h

P —Q0.=R-F

Q; Q,

m —w=w;+ w,where w,;= —— W, =

10,1 [Q,1
So P(t) = On(t) = (1-1)°Qy + 170

And the bisector rect through Q¢ is B(q) = g w where g € R
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So the intersection between () and B(q) is
(1-1)°0 + 1?°Qr=qw

So
q q
(1-1)?\Q +|t?02=¢q Ql"‘ < =|— 0+ |—| 0
10,1 10,1 10,1 10,1
Then
2 t
L:(I_l-)Z and _q:l-Z — /Q]/: t —_ d:
10,1 10,1 1Q,1  (1-t)? 1 -1
[
So as d >0 the solution for t is d?
T= d
d+1

Then by the “Equivalent quadratic beziers theorem” this value of T is the same on every

intersection of that quadratic bezier that share the start and en points at O;, (0, and the

“tension point” through the bisector, with the bisector. So is true particularly for the quadratic
bezier

Qc(t) =(1-1)°0, + 2H(1 - 1)Qc + Q>

where
QAT) = Q;r=(0,0) |= (1-T)?Q, + 2T(1-T)Qc + T?Q;
So
_(1-T)*Q,+ T° Q> ] 1-T T 1 1
S il T2 [ e R B
_ 1 10,1 0 10,1 0
2 V101 I V1021 2
Then
_ 1 0, 0,
Qe = —= VIQIQ:1 10,1 10,1
|
Il
w
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So it’'s demonstrated (. and Q¢ pass through the rect bisector B(q) so in consequence for
the coordinate translated quadratic bezier where F. and P; pass through one of the bisector
of P, P, P, through P;formed by the rect A(r).

So

h -k h-F
+
IR=Fl  |IB-Fl

P, = Pt—%\/ IP,—P |P,—P/l

P is the near point of to P,

There is other bisector perpendicular to 71 at P; thatisn = m;— m;
this vector is parallel to the tangent at P; of P.(f), as P; and F. pass through the bisector parallel to

m then E. is the near point to F; as the tangent at this point is perpendicular to F-

DEMONSTRATION

Playing on the coordinate system exposed at the before demonstration, and defining:
n—=u=w;—w

The tangent of O is
Or'= Qc'(T)=2[(1-T)(Qc— Q1) + T(Q2-0c)]

with
1
r— 4 40 =_1 ~0,+d0,
d+1 2 |d
then (after some boring operations)
, 1
O’ = sz— E o
as the dot product:
Qc . Qt =0

so when Q¢ and Q¢ pass through the rect bisector B(q), then Q. is perpendicular to the tangent
at O, so QO is the near point of Q¢ () to “tension point” Q.
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In consequence translating back the coordinates: when Py and F; pass through the rect
bisector A(r), then I, is perpendicular to the tangent at Py so Py is the near point of F(7)

to the “tension point” F.

Note: As the demonstration can be done in reverse is also true that the near point to Pc is the one
that pass through the bisector.
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