Quadratic bezier through three points

and the "equivalent quadratic bezier (theorem)"
Gabriel Suchowolski, December, 2012

Abstract

As extension of the paper "Quadratic bezier offsetting with selective subdivision - Gabriel Suchowolski, Jul 10, 2012" this document will cover some geometrical properties of the quadratic beziers that I found during my investigation for the paper.

Equivalent quadratic beziers theorem

All quadratic bezier, that share the start and end control points P_{1}, P_{2}, and the "tension point" falling in the rect L, intersect L at the same parametric value of t. (Fig.1)

With the rect L defined as

$$
L(n)=S(q)+n\left(P_{c}-S(q)\right)
$$

Where

$$
S(q)=P_{1}+q\left(P_{2}-P_{1}\right) \text { where } q \in[0,1]
$$

and for all n the collection of all quadratic beziers

$$
P_{n}(t)=(1-t)^{2} P_{1}+2 t(1-t) L(n)+t^{2} P_{2} \text { where } t \in[0,1] \text { and } n \in \mathbb{R}
$$

In other words, (for the same value of q) $P_{n_{l}}$ intersect L at $P_{n_{l}}\left(t_{n_{l}}\right)$, and $P_{n_{2}}$ intersect L at $P_{n_{2}}\left(t_{n_{2}}\right)$ where $t_{n_{2}}=t_{n_{l}}$

Quadratic bezier through three points

and the "equivalent quadratic bezier (theorem)"
Gabriel Suchowolski, December, 2012

DEMONSTRATION

Let's see what happen with the intersection of L with a quadratic bezier P_{n} with an arbitrary point $L(n)$ as "tension point" and the start and end controls points at P_{1}, P_{2}, respectively.
Where a point at rect $S, S_{q}=S(q)$ with $q \in[0,1]$ defines L as

$$
L(n)=S_{q}+n\left(P_{c}-S_{q}\right)
$$

Changing the coordinate system as $S_{q} \rightarrow(0,0)$, be the translation of $P_{n}(t)$

$$
P_{n}(t) \rightarrow Q_{n}(t)=(1-t)^{2} Q_{1}+2 t(1-t) M(n)+t^{2} Q_{2}
$$

where (because the change in the coordinate system):

$$
\begin{array}{ll}
P_{1} & \rightarrow Q_{1} \\
S_{q} & \rightarrow Q_{q}=(0,0) \\
P_{2} & \rightarrow Q_{2} \\
P_{c} & \rightarrow Q_{c} \\
L(n) & \rightarrow M(n)=n Q_{c}
\end{array}
$$

The intersection is at another point of M
\square

$$
(1-t)^{2} Q_{1}+2 t(1-t) M(n)+t^{2} Q_{2}=M(m)
$$

Then

$$
(1-t)^{2} Q_{1}+2 t(1-t) n Q_{c}+t^{2} Q_{2}=m Q_{c}
$$

Then using the components the system:

$$
(1-t)^{2} \frac{Q_{1 x}}{Q_{c x}}+2 t(1-t) \frac{n q_{c x}}{q_{c x}}+t^{2} \frac{Q_{2 x}}{Q_{c x}}=m=(1-t)^{2} \frac{Q_{1 y}}{Q_{c y}}+2 t(1-t) \frac{n Q_{c y}}{q_{c y}}+t^{2} \frac{Q_{2 y}}{Q_{c y}}
$$

then

$$
(1-t)^{2}\left[\frac{Q_{1 x}}{Q_{c x}}-\frac{Q_{1 y}}{Q_{c y}}\right]+\frac{2 t(1-t)\left(\begin{array}{c}
n-n) \\
0
\end{array}\right.}{\|}+t^{2}\left[\frac{Q_{2 x}}{Q_{c x}}-\frac{Q_{2 y}}{Q_{c y}}\right]=0
$$

Note that the roots for t does not depends of m nor n.

So for any value of n all the quadratic beziers $Q_{n}(t)$ intersect $M(n)$ at the same t Then for any value of n all quadratic beziers $P_{n}(t)$ intersect $L(n)$ at the same t

Then, in other words, all quadratic bezier, that share the start and end control points P_{1}, P_{2}, and with the "tension point" falling in the rect L intersect L at the same parametric value of t

Lets name this quadratic beziers as "equivalent quadratic beziers"

Quadratic bezier through three points

and the "equivalent quadratic bezier (theorem)"
Gabriel Suchowolski, December, 2012

Quadratic bezier through three points with P_{c} and P_{t} through the bisector

Let be the quadratic bezier
Fig.. 2
$P_{C}(t)=(1-t)^{2} P_{1}+2 t(1-t) P_{C}+t^{2} P_{2}$
where $t \in[0,1]$
there is a P_{C} "tension point" that $P(t)$ pass through three points (P_{1}, P_{t}, P_{2}), where the point $P_{t} \in P(t)$ is one that the rect through P_{C}, P_{t} is one of the bisectors of $P_{1}, \quad P_{t}, \quad P_{2}$ through P_{t} (Fig.2) formed by the rect $A(r)=$ $P_{t}+r m$ where $m=m_{1}+m_{2}$ and:

$m_{1}=\frac{P_{1}-P_{t}}{\left|P_{1}-P_{t}\right|} \quad m_{2}=\frac{P_{2}-P_{t}}{\left|P_{2}-P_{t}\right|}$

DEMONSTRATION

Fig.. 3

Be the quadratic bezier that have the start and end control points P_{1}, P_{2}, and the "tension point" at P_{t}

$$
\begin{gathered}
P_{t}(t)=(1-t)^{2} P_{1}+2 t(1-t) P_{t}+ \\
t^{2} P_{2} \text { where } t \in[0,1]
\end{gathered}
$$

Let's change the coordinate system (1) as $P_{t} \rightarrow(0,0)$ then

B(q)

$$
\begin{aligned}
P_{1} & \rightarrow Q_{1}=P_{1}-P_{t} \\
P_{t} & \rightarrow Q_{t}=(0,0) \\
P_{2} & \rightarrow Q_{2}=P_{2}-P_{t} \\
P_{c} & \rightarrow Q_{c}=P_{c}-P_{t} \\
m & \rightarrow w=w_{l}+w_{2} \text { where } w_{1}=\frac{Q_{1}}{\left|Q_{1}\right|} ; w_{2}=\frac{Q_{2}}{\left|Q_{2}\right|}
\end{aligned}
$$

So

$$
P_{t}(t) \rightarrow Q_{t}(t)=(1-t)^{2} Q_{l}+t^{2} Q_{2}
$$

And the bisector rect through Q_{t} is $B(q)=q w$ where $q \in \boldsymbol{R}$

Quadratic bezier through three points

and the "equivalent quadratic bezier (theorem)"
Gabriel Suchowolski, December, 2012

So the intersection between $Q(t)$ and $B(q)$ is

$$
(1-t)^{2} Q_{1}+t^{2} Q_{2}=q w
$$

So

$$
(1-t)^{2} Q_{1}+t^{2}\left[Q_{2}=q\left[\frac{Q_{1}}{\left|Q_{1}\right|}+\frac{Q_{2}}{\left|Q_{2}\right|}\right]=\frac{q}{\left|Q_{1}\right|} Q_{1}+\frac{q}{\left|Q_{2}\right|} Q_{2}\right.
$$

Then

$$
\frac{q}{\left|Q_{1}\right|}=(1-t)^{2} \quad \text { and } \quad \frac{q}{\left|Q_{2}\right|}=t^{2} \Rightarrow \frac{\left|Q_{1}\right|}{\left|Q_{2}\right|}=\frac{t^{2}}{(1-t)^{2}} \Longrightarrow d=\frac{t}{1-t}
$$

So as $d>0$ the solution for t is

$$
T=\frac{d}{d+1}
$$

Then by the "Equivalent quadratic beziers theorem" this value of T is the same on every intersection of that quadratic bezier that share the start and en points at Q_{1}, Q_{2} and the "tension point" through the bisector, with the bisector. So is true particularly for the quadratic bezier

$$
Q_{c}(t)=(1-t)^{2} Q_{1}+2 t(1-t) Q_{c}+t^{2} Q_{2}
$$

where

$$
Q_{c}(T)=Q_{t}=(0,0)=(1-T)^{2} Q_{1}+2 T(1-T) Q_{c}+T^{2} Q_{2}
$$

So
$Q_{c}=\frac{(1-T)^{2} Q_{1}+T^{2} Q_{2}}{-2 T(1-T)}=-\frac{1}{2}\left[\frac{1-T}{T} Q_{1}+\frac{T}{1-T} Q_{2}\right]=-\frac{1}{2}\left[\frac{1}{d} Q_{1}+d Q_{2}\right]=$
$=-\frac{1}{2}\left[\frac{\sqrt{\left|Q_{2}\right|}}{\sqrt{\left|Q_{1}\right|}} Q_{1}+\frac{\sqrt{\left|Q_{1}\right|}}{\sqrt{\left|Q_{2}\right|}} Q_{2}\right]$
Then

$$
\frac{Q_{c}=-\frac{1}{2} \sqrt{\left|Q_{1}\right|\left|Q_{2}\right|}\left[\frac{Q_{1}}{\left|Q_{1}\right|}+\frac{Q_{2}}{\left|Q_{2}\right|}\right]}{\underset{w}{\|}}
$$

Quadratic bezier through three points

and the "equivalent quadratic bezier (theorem)"
Gabriel Suchowolski, December, 2012
So it's demonstrated Q_{c} and Q_{t} pass through the rect bisector $B(q)$ so in consequence for the coordinate translated quadratic bezier where P_{C} and $\boldsymbol{P}_{\boldsymbol{t}}$ pass through one of the bisector of P_{1}, P_{t}, P_{2} through P_{t} formed by the rect $A(r)$.

So

$$
P_{c}=P_{t}-\frac{1}{2} \sqrt{\left|P_{1}-P_{t}\right|\left|P_{2}-P_{t}\right|}\left[\frac{P_{1}-P_{t}}{\left|P_{1}-P_{t}\right|}+\frac{P_{2}-P_{t}}{\left|P_{2}-P_{t}\right|}\right]
$$

P_{t} is the near point of to P_{c}

There is other bisector perpendicular to m at P_{t} that is $n=m_{l}-m_{2}$
this vector is parallel to the tangent at P_{t} of $P_{C}(t)$, as P_{t} and P_{C} pass through the bisector parallel to m then P_{C} is the near point to P_{t} as the tangent at this point is perpendicular to P_{C}

DEMONSTRATION

Playing on the coordinate system exposed at the before demonstration, and defining:

$$
n \rightarrow u=w_{1}-w_{2}
$$

The tangent of Q_{t} is

$$
Q_{t}^{\prime}=Q_{c}^{\prime}(T)=2\left[(1-T)\left(Q_{c}-Q_{1}\right)+T\left(Q_{2}-Q_{c}\right)\right]
$$

with

$$
T=\frac{d}{d+1} \text { and } Q_{c}=-\frac{1}{2}\left[\frac{1}{d} Q_{1}+d Q_{2}\right]
$$

then (after some boring operations)

$$
Q_{t^{\prime}}^{\prime}=d Q_{2}-\frac{1}{d} Q_{l}
$$

as the dot product:

$$
Q_{c} \cdot Q_{t}{ }^{\prime}=0
$$

so when Q_{t} and Q_{c} pass through the rect bisector $B(q)$, then Q_{c} is perpendicular to the tangent at Q_{t}, so Q_{t} is the near point of $Q_{c}(t)$ to "tension point" Q_{c}.

Quadratic bezier through three points

and the "equivalent quadratic bezier (theorem)"
Gabriel Suchowolski, December, 2012
In consequence translating back the coordinates: when P_{t} and $P_{\boldsymbol{c}}$ pass through the rect bisector $A(r)$, then P_{c} is perpendicular to the tangent at P_{t}, so P_{t} is the near point of $P_{c}(t)$ to the "tension point" \boldsymbol{P}_{C}

Note: As the demonstration can be done in reverse is also true that the near point to $P c$ is the one that pass through the bisector.

References

1. Algorithme de De Casteljau, P. de Casteljau. Outillages methodes calcul. Technical report, A Citroen, Paris 1959
2. Piecewise Linear Approximation of Bezier Curves Kaspar Fischer October 16, 2000
